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ABSTRACT
Traditional lost-in-space algorithms, such as those imple-
mented in astrometry.net, solve for spacecraft orientation by
matching observed star fields to celestial catalogs using ge-
ometric asterisms alone. In this work, we propose a novel
extension to astrometry.net that incorporates stellar spectral
type, which is derived from hyperspectral imagery, into the
matching process. By adding this spectral dimension to each
star detection, we constrain the search space and improve
match specificity, enabling successful astrometric solutions
with significantly fewer stars. Our modified pipeline demon-
strates improved fit rates and reduced failure cases in clut-
tered or ambiguous star fields, which is especially critical for
autonomous space situational awareness and traffic manage-
ment. Our results suggest that modest spectral resolution,
when incorporated into existing geometric frameworks, can
dramatically improve robustness and efficiency in onboard
star identification systems.

Index Terms— Astrometry, Stellar Spectral Type, Hyper-
spectral Processing, Space Traffic Management

1. INTRODUCTION

The escalating congestion of Earth’s orbital environment
poses significant challenges for space operations. As of 2024,
over 35,000 objects larger than 10 cm are tracked in Earth’s
orbit, with estimates suggesting over 1 million debris pieces
between 1 cm and 10 cm in size. This proliferation of space
debris increases the risk of collisions, threatening both ac-
tive satellites and future missions. The situation is further
exacerbated by the surge in satellite deployments, with 2,578
operational satellites launched in 2024 alone [1].

Accurate localization of objects in space is crucial for col-
lision avoidance and effective space traffic management. As-
trometric solutions, which determine the position and orien-
tation of spacecraft or debris by matching observed star fields
to known catalogs, are fundamental to this process. How-
ever, traditional astrometric methods face limitations, espe-
cially when using narrow-field-of-view (FOV) telescopes [2,
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3]. These instruments, while offering higher resolution and
increased precision in Right Ascension (RA) and Declination
(DEC), often capture fewer stars in a single frame, complicat-
ing the matching process.

To address this challenge, we propose an enhancement to
the widely-used astrometry.net (ANET) algorithm [4] by in-
corporating stellar spectral type information derived from hy-
perspectral imaging. Hyperspectral imaging telescopes cap-
ture detailed spectral information across numerous narrow,
contiguous wavelength bands, allowing for the precise analy-
sis of stellar spectra. By examining the absorption and emis-
sion lines within these spectra, astronomers can determine the
chemical composition, temperature, and other physical prop-
erties of stars, leading to accurate classification into spectral
types such as O, B, A, F, G, K, and M [5].

This classification is essential for understanding stellar
evolution and for improving astrometric solutions, especially
in scenarios where traditional imaging may not provide suf-
ficient data due to a limited number of visible stars. Hyper-
spectral sensors, which can act as an alternative to traditional
spectrographs, offer the advantage of capturing spatial and
spectral data simultaneously, enabling the detection of key
spectral features like hydrogen Balmer lines, TiO bands, and
metallic absorption lines across an entire field of view [6].

We propose Hyperspectral ANET (HS-ANET), in which
spectral data is utilized in astrometric algorithms to enhance
the ability to match observed stars with cataloged counter-
parts. Enabled by hyperspectal imaging, Figure 1 depicts
the use case of HS-ANET as a downstream algorithm for en-
hanced astrometry. By leveraging the rich spectral informa-
tion provided by hyperspectral imaging, we reduce the num-
ber of stars required for an astrometric fit, facilitating accu-
rate spacecraft localization and contributing to effective space
traffic management.

2. DATA SIMULATION AND SOURCING

2.1. Star Catalogs

Modern blind astrometry tools, such as Astrometry.net, per-
form geometric matching of detected star configurations



Fig. 1. Proposed pipeline in which HS-ANET can be used to optimize low field of view telescope astrometric fitting.

Feature Tycho-2 Gaia DR2 Gaia DR3
Release Year 2000 2018 2022
Number of Stars ∼2.5 million ∼1.7 billion ∼1.8 billion
Astrometry (RA, Dec) ∼60 mas ∼25 µas ∼25 µas
Spectral Types No Limited Yes
Spectra Availability No No Yes

Table 1. Comparison of Tycho-2, Gaia DR2, and Gaia DR3
star catalogs

(quads) against reference star catalogs. The standard imple-
mentation typically uses the Gaia DR2 catalog [7], supple-
mented with Tycho-2 [8] for improved coverage of bright
stars. This pairing serves as the baseline in our evaluation
and reflects common practice in high-accuracy astrometric
systems.

The Tycho-2 catalog contains approximately 2.5 million
of the brightest stars (V ≲ 11), with astrometric and pho-
tometric measurements derived from the Hipparcos mission.
Despite its age and lower precision, Tycho-2 remains use-
ful in legacy systems due to its completeness for bright stars.
Gaia DR2, released in 2018, significantly expanded sky cov-
erage with over 1.7 billion stars and provided milliarcsecond-
to microarcsecond-level precision in astrometry and proper
motion. However, it lacked spectral classification data and
low-resolution spectra.

In contrast, our method utilizes Gaia DR3, which has
numerous advantages outlined in Table 1. This includes en-
hanced spectrophotometric measurements via the BP (blue
photometer) and RP (red photometer) bands, as well as de-
rived astrophysical parameters such as stellar effective tem-
perature and spectral type classification. Gaia DR3 effectively
subsumes Tycho-2 in coverage, containing approximately
98.4% of all stars in the Tycho-2 catalog, and therefore does
not require explicit supplementation [9].

2.2. SatSim Data

To generate realistic astronomical scenes for testing and eval-
uation, we utilize a modified version of SatSim, a starfield and

space scene simulator [10]. SatSim is designed to support
the development of space situational awareness (SSA) and
astrometric algorithms by rendering high-fidelity images of
the night sky based on satellite-relative viewpoints. It models
camera characteristics such as field of view, resolution, and
point spread function (PSF), and can simulate a wide range of
orbital conditions. SatSim is ideal for validating algorithms
in scenarios with limited star visibility, varying noise levels,
or motion blur.

To enable spectral-type-aware astrometric experimenta-
tion, we modify SatSim to use Gaia DR3 as the underlying
star catalog. We simulate scenes where each star is annotated
with both position and spectral classification to evaluate the
impact of spectral verification under controlled conditions.
SatSim provides reproducible testbed for assessing improve-
ments in astrometric fit quality and solution robustness.

Fig. 2. Example of real world accurate starfield generated by
SatSim with FOV set to 0.25 degrees. Stars are circled in red
and come with a spectral type annotation which can be used
for performance benchmarks for HS-ANET.



3. METHODOLOGY

Astrometry.net performs four steps to find an astrometric
fit: source extraction, quad generation, hypotheses genera-
tion, and positional verification. We propose a final spectral
verification step to enhance the pipeline.

3.1. Source Extraction

Before astrometric solving can begin, the input image is pro-
cessed to detect bright point sources, typically stars. These
sources are extracted using centroiding and thresholding al-
gorithms, resulting in a list of 2D coordinates (xi, yi) cor-
responding to detected sources in the image. In our exper-
iments, we assume that stars have been extracted with their
spectral type for the preceding steps.

3.2. Quad Generation

From the extracted sources, the system constructs asterisms,
specifically quads, sets of four stars selected to form a geo-
metric configuration that is invariant to scale, rotation, and
translation. These quads are described by a set of invariant
parameters that allow for efficient indexing and comparison
against a precomputed database of catalog quads.

3.3. Hypotheses Generation

Each quad found in the image is used to query a hashed index
of catalog quads, producing a list of candidate matches. Each
match corresponds to a pose hypothesis, a proposed world-to-
image transformation that maps catalog celestial coordinates
to image coordinates.

3.4. Positional Verification (Bayesian Decision Process)

Once a candidate alignment hypothesis is generated, the sys-
tem evaluates its plausibility using a Bayesian decision pro-
cess. This step determines whether the alignment should be
accepted or rejected by comparing the probability of the ob-
servations under two competing models:

• Foreground model (F ): assumes the hypothesis is cor-
rect—the observed stars in the image correspond to cat-
alog stars under the proposed alignment.

• Background model (B): assumes the hypothesis is in-
correct—the observed stars are unrelated to the catalog.

Let D denote the set of observed detections in the image.
The system computes the posterior odds of the alignment be-
ing correct as:

P (F | D)

P (B | D)
=

P (D | F )

P (D | B)
· P (F )

P (B)

Where the first term is the Bayes Factor K. With the set of
hypothesized alignment reference stars θ and individual star
detections ti, K is defined as:

K =
P (D | F )

P (D | B)
=

|D|∑
i=0

P (ti | F )

P (ti | B)
=

|D|∑
i=0

∑|θ|
j=0 P (ti|θj , F )P (θj)

P (ti | B)

The term P (F )
P (B) is a manually set prior, which is set to 10−6

to be conservative [4]. The sequential foreground model is
specified by its data likelihood and parameter prior: The like-
lihood of the data t given parameters θ is: P (t | θ, F ) =∏|D|

i=1 P (ti | θi, F ), where the probability for a single data
point ti is given by:

P (ti | θi, F ) =

{
1/A, if ti is a distractor
N (ti | rθi , σ2

i ), otherwise

Where A is the area of the image and N (x | µ, σ2) is the
probability density of drawing x from a Gaussian distribution
with mean µ and variance σ2. The prior on the parameters
θ, p(θ | F ), requires that each parameter assignment from a
reference star to a detection is unique. We define it as follows:

p(θ | F ) =

{
0, if θi = θj for any i ̸= j∏|D|

i=1 p(θi | F ), otherwise

The probability for an individual parameter assignment, p(θi |
F ), is a mixture model where |D| is used to represent a uni-
form choice over the set of detections for a non-distractor:

p(θi | F ) =


d+ (1− d) · µi

|D|
, if ti is a distractor

1− d

|D|
, otherwise

Where d is the assumed fraction of distractor stars. In a simple
background model:

P (ti|B) =
1

A

In order to accept a hypothesized θ, the posterior odds
must be larger than the expected utility of each decision out-
lined by the utility table defined by Astrometry.net and in Ta-
ble 2.

P (F | D)

P (B | D)
>

u(TN)− u(FP )

u(TP )− u(FN)

Decision Hypothesis True Hypothesis False
Accept (Match) +1 −1999
Reject (No Match) −1 +1

Table 2. Utility table used in Astrometry.net’s Bayesian deci-
sion process.



Fig. 3. Fit rate vs. number of stars per image, comparing the
original solver and HS-ANET.

From this, the required K for a hypothesis acceptance can
be calculated as follows:

K >
P (F )

P (B)
· u(TN)− u(FP )

u(TP )− u(FN)

K > 106 · 1− (−1999)
1− (−1)

K > 109

3.5. Spectral Verification

Once a set of detections undergoes the positional verifica-
tion process, we determine whether spectral verification is re-
quired and increment or decrement the Bayes Factor depend-
ing on spectral matching.

If a hypothesis yields a Bayes Factor K that is promising
but insufficient for acceptance (τ < K < 109), we perform
an additional spectral vertification step. The Bayes Factor is
adjusted based on spectral consistency:

K ←− K +

|D∩θ|∑
i

{
+λ, if θi and ti are a spectral match
−λ, otherwise

Here, D ∩ θ is the set of all observed detections that posi-
tionally matched with a corresponding hypothesis star. The
odds-to-tune (OTT) threshold (τ ) and the reward-penalty con-
stant (λ) are tuned experimentally to filter false matches and
achieve the most robust performance. The updated K is then
re-evaluated to determine if the hypothesis can be accepted.

4. RESULTS

To evaluate the performance of our hyperspectral-enhanced
solver, HS-ANET, we generated a dataset of 958 simulated
star-field images. Each image was rendered using a telescopic
field of view (FOV) of 0.25◦ and simulates real sky-field data

Fit Rate
Stars ANET (%) HS-ANET (%) λ τ

20 97.6 97.6 102 103

15 97.1 97.3 103 103

10 92.5 94.3 103 103

9 87.3 91.4 103 103

8 71.5 86.2 102 —
7 11.3 75.3 105 103

6 0 60.1 104 103

5 0 41.4 104

4 0 0 — —

Table 3. Fit rates for original and spectral methods by number
of stars, along with the best method used.

Star Range ANET HS-ANET Performance Change
[10, 20] 0.974 0.974 +0.000
[4, 20] 0.736 0.855 +0.119
[4, 10] 0.361 0.669 +0.308

Table 4. AUC performance of ANET and HS-ANET across
different star regimes.

derived from Gaia DR3. Every star in each scene includes a
corresponding spectral type label, enabling full-spectrum ver-
ification. The dataset spans images with between 4 and 20
stars, evenly distributed across buckets {4, 5, 6, 7, 8, 9, 10,
15, 20}, allowing us to systematically assess solver robust-
ness under varying detection conditions in Table 3.

4.1. Fit Rate Analysis

We define a fit as a successful astrometric solution, deter-
mined by HS-ANET returning a correct World Coordinate
System (WCS) alignment. The fit rate at each star count level
represents the proportion of images that yielded a correct so-
lution. As seen in Figure 3, HS-ANET significantly improves
solution robustness, particularly in star-sparse regimes. At 7
detected stars per image, the original pipeline achieves only
an 11.3% fit rate, while HS-ANET reaches 75.3%. Below this
threshold, the original system fails entirely, while HS-ANET
continues to provide reliable fits in over 60% of cases with
only 6 stars, and over 40% with just 5 stars.

4.2. Normalized AUC Comparison

To summarize performance across the full star-count range,
we compute the normalized area under the curve (AUC) us-
ing the trapezoidal rule. This metric reflects overall solver
robustness and performance efficiency in Table 4.



5. DISCUSSION

Our results demonstrate that incorporating spectral type in-
formation into the astrometric verification process yields sub-
stantial improvements in narrow field astrometry with a low
number of available stars. HS-ANET achieves higher fit rates
than the baseline solver across all star-count bins, and the dif-
ference is most pronounced in the 5–10 star range, where the
original system struggles or fails entirely. Spectral type offers
an additional axis of discriminative power that allows the ver-
ification stage to more confidently accept correct hypotheses
and reject false ones, even when geometric constraints alone
are insufficient.

The improvement in normalized AUC from 0.361 to 0.669
for sparse star regimes provides a compact summary of this
gain. We demonstrate better performance at a few thresholds,
but a consistent shift toward successful fits across a wider
range of input conditions. In operational contexts, particu-
larly with narrow field-of-view telescopes, this means more
images can be resolved to accurate sky positions, reducing
mission failure rates and increasing measurement reliability.

We also find that the optimal verification parameters τ and
λ vary with star density. This suggests future work could ben-
efit from adaptive or learned parameterization, perhaps using
meta-learning or a small neural backend trained on scene-
level statistics to tune the decision model dynamically.

While our experiments are based on simulated skyfields
with Gaia DR3-derived metadata, the methodology is directly
transferable to real observations from hyperspectral-capable
telescopes. Future work will explore calibration robustness,
catalog mismatches, and real-time applicability of this ap-
proach.

6. CONCLUSION

We presented HS-ANET, a hyperspectral-enhanced exten-
sion to the Astrometry.net pipeline that incorporates stellar
spectral type into the astrometric verification process. By
augmenting the traditional positional likelihood model with
a spectral consistency term, HS-ANET achieves higher or
equal fit rates compared to the baseline solver, particularly in
scenarios with limited star detections.

Experiments conducted on 958 synthetic skyfield images
derived from Gaia DR3 demonstrate that HS-ANET achieves
a normalized AUC of 0.669, compared to 0.361 for the orig-
inal solver on sparse star regimes. Notably, HS-ANET re-
mains effective with as few as five stars per image, where the
baseline fails entirely.

These results highlight the value of hyperspectral infor-
mation for improving geometric inference in astrometry, es-
pecially for narrow-field telescopes. Hyperspectral imagery,
combined with algorithms like HS-ANET, has potential to
amplify the astrometric precision of ground-based sensors
and make strides in Space Traffic Management.
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C. Reylé, and A. C. Robin, “Stellar classification from
single-band imaging using machine learning,” Astron-
omy and Astrophysics, vol. 591, pp. A86, 2016.

[6] Specim, “What is hyperspectral imaging?: A compre-
hensive guide,” 2024, Accessed: 2025-06-06.

[7] Gaia Collaboration, A. G. A. Brown, A. Vallenari,
T. Prusti, J. H. J. de Bruijne, C. Babusiaux, C. A. L.
Bailer-Jones, et al., “Gaia data release 2: Summary of
the contents and survey properties,” Astronomy and As-
trophysics, vol. 616, pp. A1, 2018.

[8] E. Høg, C. Fabricius, V.V. Makarov, S. Urban,
T. Corbin, G. Wycoff, U. Bastian, P. Schwekendiek, and
A. Wicenec, “The tycho-2 catalogue of the 2.5 million
brightest stars,” Astronomy and Astrophysics, vol. 355,
pp. L27–L30, 2000.

[9] Gaia Collaboration, A. Vallenari, A. G. A. Brown,
T. Prusti, J. H. J. de Bruijne, C. Babusiaux, M. Bier-
mann, et al., “Gaia data release 3: Summary of the
content and survey properties,” Astronomy and Astro-
physics, vol. 674, pp. A1, 2023.

[10] Alexander Cabello and Justin Fletcher, “SatSim: a syn-
thetic data generation engine for electro-optical imagery
of resident space objects,” in Sensors and Systems for
Space Applications XV. 2022, vol. 12121, SPIE.


