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ABSTRACT

Material segmentation of satellites using multispectral imag-
ing can support ground-based sensing and is often less sen-
sitive to range and angular resolution. Many existing meth-
ods are validated primarily in simulation, leaving sim-to-real
transfer under-evaluated. We introduce M2S2, comprising
12,960 synthetic and 3,024 hardware-in-the-loop (HIL) im-
ages across 10 spectral bands (400-900 nm), three satellite
geometries, and up to eleven material classes. The dataset
systematically varies elevation angles, material complexity,
and lighting conditions, with synthetic wavelength-to-RGB
approximations and true multispectral HIL captures. As a
baseline, adapting Segment Anything (SAM) to multispectral
inputs yields statistically significant gains over RGB on syn-
thetic data, with advantages increasing with material count
(up to +4.64% macro recall), where 75% of non-two-class
settings are significant at o = 0.05. HIL predictions exhibit
uniformly high temporal consistency (mTC = 0.9830) with
modest lighting effects (weak diffuse exceeding directional
by 0.0024). These results suggest M2S2 is useful for charac-
terizing sim-to-real challenges and for studying domain adap-
tation in satellite material segmentation. The dataset is avail-
able at |https://huggingface.co/datasets/e-dealba/M2S2|

Index Terms— Multispectral, Material Segmentation,
Segment Anything Model (SAM), Hardware-in-the-loop
(HIL).

1. INTRODUCTION

Autonomous material segmentation of resident space objects
(RSOs) supports ground-based sensing tasks such as func-
tionality assessment, status monitoring, and anomaly screen-
ing [}, 2L [3]. While on-orbit material segmentation has been
demonstrated [4]], ground-based sensors offer advantages in-
cluding monitoring capabilities, reduced mission complexity,
and surveillance of large orbital populations [5 16l [7]. Tradi-
tional methods rely on optical imagery, but their effectiveness
is reduced at geostationary orbit (GEO) and beyond due to
limited spatial resolution. To address these constraints, spec-
troscopic techniques have been adopted, offering characteri-
zation based on material reflectance spectra that is less sensi-
tive to range and angular resolution [8].

Prior work has presented semantic segmentation meth-
ods for space traffic management (STM) using multispectral
imaging [9]. However, the sim-to-real transfer problem is
under-evaluated on real data, with existing methods only val-
idated on simulated data using advanced simulators due to
lack of spectral data [10]] and the challenge in obtaining real
on-orbit data [11]]. A public multispectral dataset can support
sim-to-real studies by providing labeled data that are imprac-
tical to obtain in operational scenarios. In the past decade,
similar datasets like SPEED+ [12]] have catalyzed advances
in spacecraft pose estimation and navigation.

Following the approach established by SPEED+, we em-
ploy a similar methodology to physically recreate and simu-
late the space environment using a ground-based hardware-in-
the-loop (HIL) robotic testbed capable of capturing arbitrary
numbers of images of target mockup models. These HIL im-
ages serve as a surrogate for spaceborne imagery, enabling
ground-based evaluation of segmentation performance across
domains that differ from synthetic training data.

In this paper, we propose M2S2, a publicly available
benchmark Multispectral dataset for Material Segmentation
of Satellites. M2S2 comprises 12,960 synthetic and 3,024
hardware-in-the-loop (HIL) images, captured with a TOU-
CAN snapshot camera spanning 10 spectral bands (400-
900 nm). It features three satellite geometries, up to eleven
material classes. Sample images are shown in Figure [T] of
synthetic RGB and multispectral captures alongside HIL
images.

For the synthetic domain, we utilized the open-source 3D
graphics software Blender to render analogous scenarios: ele-
vation angles, material assignments, and satellite geometries.
HIL images were captured using the TOUCAN Snapshot
Multispectral Camera under three different illumination con-
ditions: weak diffuse, strong diffuse, and directional lighting.
M2S2’s images feature three distinct satellite geometries—
Voyager, ISS, and Hubble-with each satellite incorporating
up to 11 materials across three different material combina-
tions.

We provide a baseline performance study focused on ma-
terial segmentation, while noting the dataset’s broader poten-
tial for applications including 3D reconstruction [13}[14] and
pose estimation [[15].
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Fig. 1: Example Raw Images of 10-Material Voyager Satellite from M2S2. From left to right: synthetic, RGB; synthetic,

multispectral; HIL, directional; HIL, strong diffuse.

2. M2S2 DATASET

2.1. Setup

The dataset was collected using a TOUCAN Snapshot Mul-
tispectral Camera (SILIOS Technologies), which captures
images across 10 spectral bands spanning 400-900 nm with
an average bandwidth of 30-50 nm. The camera integrates a
custom Bayer-like mosaic filter on a 4.2 MP CMOS sensor
(2048 x 2048 raw resolution, 512 x 512 spectral resolu-
tion, 5.5 pm pixel pitch) with a maximum acquisition rate
of 65 Hz. Exposure times are adjustable from 100 us to
5 s with 10-bit digitization. For operation, we employed
the COLOR SHADES LAB SDK, which enables display of
raw and processed images, spectral normalization, crosstalk
correction, and hypercube extraction. During data collection,
the TOUCAN was mounted on a SmallRig mini tripod with
a fixed clamp for stability and fitted with a vintage 50 mm
f/2 M42-mount lens. Diffuse illumination was provided by
full-spectrum LED bars (24 W, 5000 K, ~2200 Im each).
For weak diffuse lighting, three bars were activated (~6600
Im total); for strong diffuse lighting, five bars were used
(~11000 Im). Directional illumination was achieved with a
LED spotlight (50 W, 5000 K, ~5000 Im), oriented at a con-
trolled incident angle to create single-source, high-contrast
conditions.

2.2. Satellite Mockups

The dataset includes mockups of three satellites: Voyager,
International Space Station (ISS), and Hubble. We fabri-
cated mockups with a Bambu Al Mini 3D printer to cre-
ate controlled targets with material and color diversity. A
range of eleven PLA-based filaments were employed, includ-
ing PolyLite PLA (Dark Grey, Olive Brown, Lime Green,
Red, Azure Blue, Cold White, Wood) and PolyLite PLA
Pro (Metallic Blue, Silver, Gold, Metallic Magenta). These
variations in surface color and reflectance were selected to
emulate distinct material signatures for multispectral segmen-
tation. For each satellite geometry, we offer three material

Table 1: Material Usage Across M2S2 Satellite Builds (B1/B2/B3). All
materials are PolyLite PLA filaments.

Voyager ISS Hubble
Material Bl B2 B3 |Bl B2 B3|Bl B2 B3
Pro Silver \/\/\/\/\/\/\/\/\/
Dark Grey v Vv v Vv Vavd
Pro Metallic Blue v’ v v v v
Pro Gold \/ v’ \/ v’
Cold White v v v Vv
Pro Metallic Magenta v’ v Vv
Red v’ v’
Azure Blue v’ v’
Olive Brown v’ v’
Lime Green v’ v’
Wood v’
Total Materials | 1 4 10 | 1 5 10 | 1 4 4

combinations: (i) a simple control wherein the satellite is
entirely composed of PolyLite PLA Pro Silver Filament; (ii)
a more challenging multi-material version where the satel-
lite has 4-6 different materials; and (iii) the most complex
case where satellites can have up to 11 different materials
per build. The exact filament combinations are tabulated in
Table[T]

2.3. Generating Synthetic and HIL Images

We import Bambu Lab meshes (STL/3MF) into Blender and
apply a uniform rendering/capture protocol. For each satel-
lite geometry and material, synthetic and HIL images are ac-
quired every 10° about the z-axis at positive, flat, and negative
tilts. The HIL protocol is repeated under all lighting condi-
tions to mirror the synthetic setup, yielding paired masks and
labels across domains.

Because Blender renders in RGB, we approximate each
multispectral band by mapping its center wavelength to an
RGB color. For each of the 10 TOUCAN sensor bands (rang-



ing from 431 nm to 877 nm), we apply a wavelength-to-RGB
mapping function with gamma correction (y = 0.80) to com-
pute an approximate RGB representation of each spectral
band. Scene lighting is then adjusted to this RGB color to
simulate illumination at the target wavelength. This yields
band-specific RGB renderings that capture approximate spec-
tral variations across materials. While this approach does not
model sensor spectral responses, BRDF effects, or atmo-
spheric transmission, it provides a controlled approximation
for studying cross-domain tendencies, not absolute multi-
spectral performance.

The raw HIL frames include a positioning stand; which
shares the same material as our single-material models. We
also acquire a single lens-capped dark frame D; and subtract
it from the corresponding raw image Rj:

Iy = Ry — Dy,

followed by clipping negative values to zero. Residual arti-
facts are spatially disjoint from satellite regions and had neg-
ligible effect in our segmentation runs.

2.4. Material Segmentation
2.4.1. Zero-Shot Segment Anything

We run Segment Anything (SAM) in zero-shot “auto” mode
on each image to produce instance masks without prompts,
using a ViT-H checkpoint with a high IoU/stability thresh-
old. These masks are then projected to a single semantic label
map via a compositing pass that paints unlabeled pixels mask-
by-mask (small-to-large), requiring minimal effective cover-
age and preferring non-background labels on near ties. For
RGB, this yields one semantic prediction per view. For mul-
tispectral, we first use PCA to pick the three bands with the
largest loadings on the leading components (i.e., bands 5, 9,
and 10) and then run the same SAM auto-mask to semantic
conversion per selected band. The resulting label maps are
then fused with a pixel-wise majority vote (non-background
favored on ties) to form the final multispectral prediction. We
use the top three bands for synthetic and HIL images.

2.4.2. Performance Metrics

For synthetic images, we evaluate macro-averaged preci-
sion, macro-averaged recall, and Dice [16]]. Macro-averaged
precision and recall provide class-agnostic performance as-
sessment by computing precision and recall for each material
class independently and averaging the results. This approach
ensures that performance on minority material classes re-
ceives equal weight to majority classes, which is important
given the varying material distributions across satellite ge-
ometries. The Dice coefficient (also known as F1-score) rep-
resents the harmonic mean of precision and recall, providing
a single metric that balances both measures. Together, these

metrics provide evaluation coverage of both pixel-level accu-
racy and class-level performance consistency. Significance
was assessed via paired t-tests at « = 0.05 and o = 0.01
with an assumed within-image correlation p = 0.9, acknowl-
edging shared images but avoiding the unrealistic p = 1.0.

Because exhaustive ground truth is unavailable for HIL
images, we report a ground-truth-free temporal/augmentation
consistency score (mTC), which has been reported to corre-
late with supervised mloU and is used as a stability proxy [17].
We define mTC as the mean IoU between a model’s base pre-
diction and its predictions under small input perturbations, all
compared in the same reference frame. Let 2 € R#*W*xC and
f produce § = f(x) € {0,..., L} W Fork =1,.... K,
apply a perturbation 7 to x, predict §;, = f(7x(x)), and
inverse-warp g = 75, '(¢},). We use micro-IoU (optionally
omitting an ignore label g):

K
1 o
mTC = % ,;_1 ToU(§, Jk) -

Unless noted otherwise, we use the same three bands as
synthetic {5, 9, 10}, convert SAM proposals to a per-band se-
mantic map by keeping the top kper pand=num_classes in-
stances after IoU de-duplication (0.9), and fuse bands by ma-
jority vote in binary form (foreground vs. background). We
then compute mTC with K=8 random integer-pixel trans-
lations applied identically to all bands, where (Axy, Ayg)
are sampled uniformly from {—3,—2,—1,0,1,2,3}?; in-
verse warping is exact by roll back. A fixed random-number
generator (RNG) seed (= 42) is used for reproducibility.

2.4.3. Implementation Details

All inferences were conducted on a workstation equipped
with four NVIDIA Tesla V100 GPUs (32 GB each, CUDA
11.5), 251 GB of RAM, and an Intel Xeon E5-2698 v4 CPU
(20 cores, 40 threads).

3. EXPERIMENTS

We provide a baseline performance study by adapting Seg-
ment Anything Model (SAM) [[18] to multispectral data by
applying it per-channel and fusing results via majority voting.
The synthetic domain consists of RGB-approximated multi-
spectral renderings, while the HIL domain contains true mul-
tispectral imagery from the TOUCAN sensor. The goal of
this study is to characterize M2S2 and validate its suitability
for evaluating domain gaps in spaceborne machine learning
(ML) and vision applications, rather than to identify an effec-
tive multispectral segmentation approach.

From Table 2| and Figure 2] synthetic multispectral inputs
show higher scores than RGB across satellites, elevations,
and class counts, with the most consistent gains in macro re-
call and corresponding improvements in Dice. The advantage



Fig. 2: Sample synthetic material segmentations, 10-
material ISS, RGB (top) and multispectral (bottom) Left
to right: ground truth, prediction, correctness map.

bt
#

Fig. 3: Sample HIL images (top) and material segmenta-
tions (bottom), Hubble B2, E2. Left to right: directional,
weak diffuse, strong diffuse.

scales with class complexity: for Voyager, multispectral im-
proves macro recall by +0.0464 in the 11-material case, com-
pared with +0.0195 at 5 materials and -0.0107 at 2 materials.
ISS and Hubble show the same pattern, with minimal change
in the 2-class setting and clear lifts at higher class counts, no-
tably for ISS at 6 and 11 materials. Across non-two material
classes 75% of macro-recall improvements are significant at
a = 0.05 and 55% at o = 0.01. Precision shifts are modest
and mixed, consistent with higher coverage of true positives
without per-class calibration, while recall and Dice account
for most of the significant gains. Averaged over settings, ISS
benefits most (Dice +3.63%, Recall +4.53%), followed by
Voyager (+1.29%,+1.23%) and Hubble (+0.87%, +1.34%).
Variation across elevations within a satellite is small relative
to the effects of material class count and satellite geometry,
which are the primary drivers of the multispectral advantage.

From Table [2] and Figure [3] multispectral HIL prediction
stability is uniformly high: mTC scores cluster around 0.9830
for across satellites, class counts, and elevations, indicating
near-ceiling consistency under small perturbations. Light-
ing has a modest, repeatable effect, with Solo/All (diffuse)
typically matching or slightly exceeding Directional by an
average 0.0024/0.0023, consistent with smoother illumina-

Table 2: Per-Satellite Material Segmentation Results with SAM Base-
line. Results shown for Synthetic RGB and Multispectral (Multi) and HIL
Directional, Weak Diffuse, and Strong Diffuse for Voyager, ISS, and Hubble
across various elevations and material combinations.

Synthetic HIL
Satellite Classes Elevation Macro Precision ~ Macro Recall Dice mTC

RGB Multi RGB Multi RGB  Multi Dir Weak  Strong
EO 0.9497 0.9614 0.9356 0.9224 0.9420 0.9400 0.9904 0.9888 0.9904
2 El 0.9523  0.9544 0.9335 0.9385 0.9411 0.9453 0.9883 0.9864 0.9888
E2 0.9254  0.9365 0.8868 0.8628 0.9020 0.8923 0.9885 0.9862 0.9883
EO 0.7708 0.7916 0.6966 0.7185 0.7050 0.7255 0.9868 0.9868 0.9869
Voyager 5 El 0.7892  0.7870 0.7506 0.7648 0.7447 0.7540 0.9877 0.9863 0.9855
E2 0.7397 0.7777 0.6946 0.7171 0.6988 0.7181 0.9869 0.9853 0.9854
EO 0.5718 0.5970 0.6539 0.6815 0.6021 0.6278 0.9891 0.9875 0.9870
11 El 0.5869 0.5912 0.6750 0.6759 0.6199 0.6201 0.9883 0.9853 0.9855
E2 0.5100 0.5203 0.5773 0.6059 0.5336 0.5525 0.9881 0.9883 0.9875
EO 0.9079 0.9121 0.9613 0.9975 0.9241 0.9505 0.9770 0.9777 0.9788
5 El 09168 09163 0.9262 0.9396 0.9091 0.9197 0.9728 0.9773 0.9769
E2 0.9426 09391 0.9323 0.9377 0.9344 0.9359 0.9631 0.9725 0.9727

E3 0.9110  0.9090 0.9684 0.9814 0.9339 0.9395 - - -
EO 0.7579 0.7465 0.5663 0.6226 0.5928 0.6219 0.9752 0.9785 0.9812
1SS 6 El 0.7651  0.7990 0.6157 0.6540 0.6279 0.6695 0.9687 0.9733 0.9756
E2 0.8051 0.8290 0.6691 0.7229 0.6893 0.7371 0.9728 0.9762 0.9774

E3 0.7443  0.7628 0.6487 0.6635 0.6450 0.6603 - - -
EO 0.6305 0.6151 0.4800 0.4999 0.5013 0.5084 0.9732 0.9846 0.9818
1 El 0.5594 0.6136 0.4382 0.4862 0.4578 0.5025 0.9610 0.9793 0.9788
E2 0.5814 0.6326 0.5117 0.5791 05174 0.5797 0.9676 0.9787 0.9775

E3 0.5832  0.5891 0.4797 0.4844 0.4857 0.4921 - - -
EO 0.9698 0.9683 0.9911 0.9948 0.9802 0.9811 0.9878 0.9871 0.9846
2 El 0.9764 0.9744 0.9921 0.9962 0.9841 0.9850 0.9877 0.9902 0.9861
E2 0.9744  0.9732  0.9905 0.9939 0.9823 0.9833 0.9854 0.9819 0.9867
EO 0.7397 0.7464 0.7578 0.7721 0.7477 0.7583 0.9867 0.9861 0.9855
Hubble 5 El 0.7269 0.7388 0.7369 0.7606 0.7318 0.7478 0.9860 0.9868 0.9865
E2 0.6950 0.7006 0.7070 0.7210 0.7004 0.7100 0.9850 0.9850 0.9862
EO 0.7844 0.7927 0.7995 0.8173 0.7912 0.8043 0.9867 0.9890 0.9863
11 El 0.7322 0.7378 0.7471 0.7590 0.7392 0.7471 0.9817 0.9877 0.9860
E2 0.6978 0.6992 0.7189 0.7259 0.7070 0.7113 0.9839 0.9873 0.9852

*Paired t-test statistical significance denoted with Bold for o« = 0.05 and italic for
a = 0.01. Note: E3 is an additional elevation in our synthetic dataset.

tion yielding more stable masks. Class complexity introduces
small degradations. Variation across elevations (EO-E2) is
minor relative to lighting and class count. Overall, these re-
sults show the HIL pipeline produces stable segmentations
in real captures, with mild sensitivity to directional light and
high class cardinality that is largely mitigated by diffuse illu-
mination.

Overall, these results suggest M2S2 is useful as a con-
trolled testbed for evaluating domain gaps in spaceborne ML.
The observed multispectral gains on synthetic data and sys-
tematic performance trends across lighting, geometry, class
count, and material contrast indicate that the dataset exposes
realistic challenges for adapting segmentation systems toward
spaceborne settings.

4. CONCLUSION

We introduce M2S2, a publicly available multispectral dataset
for satellite material segmentation, comprising RGB-approx-
imated synthetic multispectral imagery and hardware-in-the-
loop (HIL) true multispectral data across three satellite ge-
ometries with up to eleven material classes. Our baseline
SAM evaluation demonstrates statistically significant mate-
rial segmentation performance lifts for synthetic multispectral
inputs over RGB. It also shows high stability in prediction for
HIL images across satellite geometry, material, lighting, and
elevation scenarios. This validates M2S2’s utility for charac-
terizing sim-to-real transfer challenges in spaceborne appli-



cations. The dataset provides a standardized benchmark for
developing and evaluating multispectral segmentation meth-
ods tailored to space-based scenarios. By enabling systematic
study of domain adaptation techniques, M2S2 represents an
important step toward autonomous material identification ca-
pabilities for future space missions that require satellite char-
acterization and monitoring.
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